Analysis of Decision Boundaries Generated by Constructive Neural Network Learning Algorithms
نویسندگان
چکیده
Constructive learning algorithms o er an approach to incremental construction of near-minimal arti cial neural networks for pattern classi cation. Examples of such algorithms include Tower, Pyramid, Upstart, and Tiling algorithms which construct multilayer networks of threshold logic units (or, multilayer perceptrons). These algorithms di er in terms of the topology of the networks that they construct which in turn biases the search for a decision boundary that correctly classi es the training set. This paper presents an analysis of such algorithms from a geometrical perspective. This analysis helps in a better characterization of the search bias employed by the di erent algorithms in relation to the geometrical distribution of examples in the training set. Simple experiments with non linearly separable training sets support the results of mathematical analysis of such algorithms. This suggests the possibility of designing more e cient constructive algorithms that dynamically choose among di erent biases to build near-minimal networks for pattern classi cation.
منابع مشابه
Machine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملComparative Analysis of Machine Learning Algorithms with Optimization Purposes
The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches. Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data. In this paper, a methodology has been employed to opt...
متن کاملEarly Prediction of Gestational Diabetes Using Decision Tree and Artificial Neural Network Algorithms
Introduction: Gestational diabetes is associated with many short-term and long-term complications in mothers and newborns; hence, the detection of its risk factors can contribute to the timely diagnosis and prevention of relevant complications. The present study aimed to design and compare Gestational diabetes mellitus (GDM) prediction models using artificial intelligence algorithms. Materials ...
متن کاملImproving the Performance of Machine Learning Algorithms for Heart Disease Diagnosis by Optimizing Data and Features
Heart is one of the most important members of the body, and heart disease is the major cause of death in the world and Iran. This is why the early/on time diagnosis is one of the significant basics for preventing and reducing deaths of this disease. So far, many studies have been done on heart disease with the aim of prediction, diagnosis, and treatment. However, most of them have been mostly f...
متن کاملINTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995